
Porting Linux to a
new SoC

● PrasannaKumar Muralidharan
○ Linux kernel enthusiast
○ Contributed to a few open source projects
○ Contributed several patches to hwrng subsystem
○ Wrote CI20 PRNG driver
○ Implemented X1000 SoC support

● Email: prasannatsmkumar@gmail.com

● IRC Nick: prasannatsm

● Linkedin: https://www.linkedin.com/in/prasannakumartsm/

Who am I?

mailto:prasannatsmkumar@gmail.com
https://www.linkedin.com/in/prasannakumartsm/

End result of porting

● Single CPU

● Early printk messages via UART

● Interrupts

● Timer

● Serial Port

● Boots tiny rootfs embedded in initramfs

Assumptions

● Boot loader is available, capable of booting Linux

● CPU architecture is supported by Linux

● SoC Programmer Manual is available or vendor provided Linux port is available

● Or info on similar SoC

What’s wrong with vendor code?

● Usually SoC vendor provide ancient version of Linux

● Does not use proper Linux provided infrastructure/framework

● Has major design issues and bugs

● Crashes if use case is different from vendor’s use case

● Security vulnerabilities

● Generic user space may not work

● Ugly, unreadable code

Vendor code has workaround for hardware bugs. It helps a lot while debugging issues.

What is Device Tree

Device Tree provides hardware description

● Similar to what ACPI does but far better than ACPI

● Required for non discoverable devices

● Ideally should be provided by boot loader to Linux
○ Power, SPARC boot loaders does this
○ uboot does not provide its own device tree

● Device Tree Source (dts) is converted to Device Tree Blob (dtb)

● uboot takes dtb from disk or via tftp, passes it to Linux

● Or dtb is appended with kernel image (required for legacy uboot)

Device Tree

● Add one <soc>.dtsi file in arch/mips/boot/dts/<soc-vendor>/ that describes the SoC

● One <board>.dts for each board that uses the SoC
○ <soc>.dtsi is included in <board>.dts file

● Multiple boards can use the same SoC, each board gets one dts

● Add dtb-$(CONFIG_ARCH_<yourboard>) line to

arch/mips/boot/dts/<soc-vendor>/Makefile for all boards. This will build dtb for the

boards

X1000 SoC dtsi (x1000.dtsi)

X1000 SoC dtsi (x1000.dtsi)

Basic code in arch/mips/<soc>/setup.c

Implements the following routines (for MIPS)

● plat_mem_setup - detects RAM size

● device_tree_init - unflattens device tree blob

● arch_init_irq - sets up interrupts

● Machine reset, halt

Usually very small and could be as simple as calling generic functions

● Prints early kernel messages

● Polling based uart driver, interrupts not availble yet

● Must implement struct console’s write method

● Not necessary to implement uart read support

● Does not require kernel recompilation, can be enabled using command line
○ Earlyprintk support requires kernel recompilation

Earlycon support

Interrupt controller support

● Should use irqchip framework

● No fixed number of IRQ (NR_IRQ)

● If the SoC uses CPU architecture’s generic interrupt controller, drivers are already

available

● Other SoC from the same vendor can have same interrupt controller hardware, its driver

could be reused

● If the SoC uses a custom interrupt controller then a new driver has to be implemented

● If irqchip framework is used, arch_init_irq should just call irqchip_init. irqchip_init scans

device tree and call the interrupt controller driver’s init routine

● Instantiated from Device Tree .dtsi file

Timer driver

● Should use clocksource framework

● Timer driver must register
○ A clocksource device - a free running timer. It is used to keep track of passing time.
○ A clockevents device - a timer that can be programmed for one-shot or repeated events notified

via interrupt
○ Note: Each CPU in SMP machine requires a clockevents device. Not going to go in detail about this.

● Driver must have a device tree binding, instantiated from dtsi file

Serial Port driver

● Common uart hardware drivers are available in kerenl. If the SoC uses any of these blocks

the driver can be reused with few modification. Example 8250 compatible uart controller

● Custom UART controller requires a new driver that works with uart and console

subsystems

● This is also instantiated from Device Tree .dtsi file

Ingenic X1000 SoC

● Reused Ingenic JZ4740 SoC’s
○ SoC setup code
○ Interrupt controller driver
○ Timer driver
○ Serial port driver
○ Parts of clock driver

● Writing a device tree source is enough to provide initial SoC support

Ready to submit

● All basic blocks are in place

● Linux can boot successfully in the SoC to a tiny rootfs embedded in initramfs

● Submit the basic SoC support code

● This provides a solid base for further development

● No disk, SMP or Power Management support yet

Clock driver

● Every digital circuit needs a clock

● Few clock sources are present - could be internal or external

● Every clock sent to a hardware block is derived from the clock source

● Common clock framework implements API required for device drivers to access the clock

that is sent to a hardware block

● Clock provider driver has to be implemented

● Necessary for power management, dynamic CPU frequency scaling

● Instantiated via device tree

IO Pins with multiple functionality

● Modern SoCs can connect to several IO peripherals but have limited number of pins

● A set of pins is capable of working with multiple peripherals

● A particular functionality can be chosen from a set of supported functionality
○ A set of pins can work as USB bus, can take audio signals to a headphone jack etc

● The functionality is based on how a board uses the SoC, can be selected at runtime by

software

Pinctrl driver

● Pinctrl subsystem provides a way to expose all functionalities a set of pins could have in a

given SoC

● Pinctrl subsystem provides API to let the device drivers choose a particular functionality

● For example, a sound driver could request a pin configuration that supports audio data

transport if the board is designed that way

● Pinctrl framework interacts with a SoC specific pinctrl driver to determine the available

configuration, select a configuration etc

● Pin configuration can be described in device tree source

GPIO driver

● Stands for General Purpose IO

● Some pins are left for generic functionality

● Can connect any IO peripheral or electronic circuit

● Touch screen controller, LEDs etc can work with these pins

● GPIO framework exposes an API for drivers to claim GPIO pins and use it as they want

● GPIO pins can generate interrupts as well

● GPIO framework needs a SoC specific gpio driver to do hardware specific stuff

● Instantiated via device tree

Time to submit

● At this juncture basic infrastructure for the SoC is ready

● Time to submit it upstream and get it merged

● It’s time to work on drivers for peripherals

Next step

Next step would be to implement support for

● DMA controller

● SMP

● I2C, I2S, PCI, USB

● Disk

● Network (eth or wifi)

● Audio controller

● Touch controller

● Display

● Crypto hardware

● etc

Stuff that I am working on

● MIPS Creator CI20 pseudo random number generator driver

● CI20 efuse driver, exposing MAC address to dm9000 driver from CI20 efuse

● Ingenic X1000 SoC support

Things on my todo list

● Complete clock driver for X1000 SoC

● ADC driver for CI20

● SMP support on CI20

● CI20 display panel driver

● Upstreaming kernel patches carried by OpenWRT / LEDE project

Questions?

Thank You

