Porting Linux to a
new SoC

Who am |?

e PrasannaKumar Muralidharan
o Linux kernel enthusiast
o Contributed to a few open source projects
o Contributed several patches to hwrng subsystem
o Wrote CI20 PRNG driver
o Implemented X1000 SoC support
e Email: prasannatsmkumar@gmail.com
e |RC Nick: prasannatsm

e Linkedin: https://www.linkedin.com/in/prasannakumartsm/

mailto:prasannatsmkumar@gmail.com
https://www.linkedin.com/in/prasannakumartsm/

End result of porting

Single CPU

Early printk messages via UART
Interrupts

Timer

Serial Port

Boots tiny rootfs embedded in initramfs

Assumptions

Boot loader is available, capable of booting Linux

CPU architecture is supported by Linux

SoC Programmer Manual is available or vendor provided Linux port is available
Or info on similar SoC

What's wrong with vendor code?

Usually SoC vendor provide ancient version of Linux

Does not use proper Linux provided infrastructure/framework
Has major design issues and bugs

Crashes if use case is different from vendor’s use case

Security vulnerabilities

Generic user space may not work

Ugly, unreadable code

Vendor code has workaround for hardware bugs. It helps a lot while debugging issues.

What is Device Tree

Device Tree provides hardware description

e Similar to what ACPI does but far better than ACPI
e Required for non discoverable devices

e Ideally should be provided by boot loader to Linux
o Power, SPARC boot loaders does this
o uboot does not provide its own device tree

e Device Tree Source (dts) is converted to Device Tree Blob (dtb)
e uboot takes dtb from disk or via tftp, passes it to Linux
e Ordtbis appended with kernel image (required for legacy uboot)

Device Tree

Add one <soc>.dtsi file in arch/mips/boot/dts/<soc-vendor>/ that describes the SoC
e One <board>.dts for each board that uses the SoC
o <soc>.dtsiisincluded in <board>.dts file
e Multiple boards can use the same SoC, each board gets one dts
e Adddtb-$(CONFIG_ARCH_<yourboard>) line to
arch/mips/boot/dts/<soc-vendor>/Makefile for all boards. This will build dtb for the
boards

X1000 SoC dtsi (x1000.dtsi)

#address-cells = <1>;
#size-cells = <1>;
compatible = "ingenic, x10080";

cpuintc: interrupt-controller {
#address-cells = =8>;
#interrupt-cells = =<1>;
interrupt-controller;
compatible = "mti, cpu-interrupt-controller”;

interrupt-controllerg

compatible = "ingenic, x1080-intc", "ingenic, jz4780-intc";
reg = <8x10081808 ex58>;

interrupt-controller;
#interrupt-cells = <i>;

interrupt-parent = <&cpuintc>;
interrupts = <2>;

ext {
compatible = "fixed-clock";
#clock-cells = <=B@=;

rtc {
compatible = "fixed-clock";
#clock-cells = <=@=;
clock-frequency = <32768>;

X1000 SoC dtsi (x1000.dtsi)

z4780-uart";

interrupt-p
interrupts

~

"module";

Basic code in arch/mips/<soc>/setup.c

Implements the following routines (for MIPS)

plat_mem_setup - detects RAM size
device_tree_init - unflattens device tree blob
arch_init_irqg - sets up interrupts

Machine reset, halt

Usually very small and could be as simple as calling generic functions

Earlycon support

Prints early kernel messages

Polling based uart driver, interrupts not availble yet
Must implement struct console’s write method

Not necessary to implement uart read support

Does not require kernel recompilation, can be enabled using command line
o Earlyprintk support requires kernel recompilation

Interrupt controller support

Should use irqchip framework
No fixed number of IRQ (NR_IRQ)

e Ifthe SoC uses CPU architecture’s generic interrupt controller, drivers are already
available

e Other SoC from the same vendor can have same interrupt controller hardware, its driver
could be reused
If the SoC uses a custom interrupt controller then a new driver has to be implemented

e Ifirqchip framework is used, arch_init_irq should just call irgchip_init. irqchip_init scans
device tree and call the interrupt controller driver’s init routine

e Instantiated from Device Tree .dtsi file

Timer driver

e Should use clocksource framework

e Timerdriver must register
o Aclocksource device - afree running timer. It is used to keep track of passing time.
o Aclockevents device - a timer that can be programmed for one-shot or repeated events notified
via interrupt
o Note: Each CPU in SMP machine requires a clockevents device. Not going to go in detail about this.
e Driver must have a device tree binding, instantiated from dtsi file

Serial Port driver

e Common uart hardware drivers are available in kerenl. If the SoC uses any of these blocks
the driver can be reused with few modification. Example 8250 compatible uart controller

e Custom UART controller requires a new driver that works with uart and console
subsystems

e Thisis also instantiated from Device Tree .dtsi file

Ingenic X1000 SoC

e Reused Ingenic JZ4740 SoC’s

SoC setup code
Interrupt controller driver
Timer driver
Serial port driver
o Parts of clock driver
e Writing a device tree source is enough to provide initial SoC support

o O O O

Ready to submit

All basic blocks are in place

Linux can boot successfully in the SoC to a tiny rootfs embedded in initramfs
Submit the basic SoC support code

This provides a solid base for further development

No disk, SMP or Power Management support yet

Clock driver

Every digital circuit needs a clock

Few clock sources are present - could be internal or external

Every clock sent to a hardware block is derived from the clock source

Common clock framework implements API required for device drivers to access the clock
that is sent to a hardware block

Clock provider driver has to be implemented

Necessary for power management, dynamic CPU frequency scaling

e Instantiated via device tree

IO Pins with multiple functionality

Modern SoCs can connect to several |0 peripherals but have limited number of pins
A set of pins is capable of working with multiple peripherals
e Aparticular functionality can be chosen from a set of supported functionality
o Aset of pins can work as USB bus, can take audio signals to a headphone jack etc
e The functionality is based on how a board uses the SoC, can be selected at runtime by

software

Pinctrl driver

e Pinctrl subsystem provides a way to expose all functionalities a set of pins could have in a
given SoC
Pinctrl subsystem provides API to let the device drivers choose a particular functionality

e Forexample, asound driver could request a pin configuration that supports audio data
transport if the board is designed that way

e Pinctrl framework interacts with a SoC specific pinctrl driver to determine the available
configuration, select a configuration etc

e Pinconfiguration can be described in device tree source

GPIO driver

Stands for General Purpose |O

Some pins are left for generic functionality

Can connect any |0 peripheral or electronic circuit

Touch screen controller, LEDs etc can work with these pins

GPIO framework exposes an API for drivers to claim GPIO pins and use it as they want
GPIO pins can generate interrupts as well

GPIO framework needs a SoC specific gpio driver to do hardware specific stuff
Instantiated via device tree

Time to submit

e At thisjuncture basicinfrastructure for the SoC is ready
e Timetosubmititupstream and get it merged
e It'stimetowork ondrivers for peripherals

Next step

Next step would be to implement support for

DMA controller
SMP

12C, 12S, PCI, USB
Disk

Network (eth or wifi)
Audio controller
Touch controller
Display

Crypto hardware
etc

Stuff that | am working on

e MIPS Creator Cl20 pseudo random number generator driver
e Cl20 efuse driver, exposing MAC address to dm%000 driver from Cl20 efuse
e Ingenic X1000 SoC support

Things on my todo list

Complete clock driver for X1000 SoC

ADC driver for C120

SMP support on C120

Cl20 display panel driver

Upstreaming kernel patches carried by OpenWRT / LEDE project

Questions?

Thank You

